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In this paper, we study the transverse vortex-induced vibrations of an elastically
mounted rigid cylinder in a fluid flow. We use simultaneous force, displacement and
vorticity measurements (using DPIV) for the first time in free vibrations. There exist
two distinct types of response in such systems, depending on whether one has a
high or low combined mass–damping parameter (m∗ζ). In the classical high-(m∗ζ)
case, an ‘initial’ and ‘lower’ amplitude branch are separated by a discontinuous mode
transition, whereas in the case of low (m∗ζ), a further higher-amplitude ‘upper’ branch
of response appears, and there exist two mode transitions.

To understand the existence of more than one mode transition for low (m∗ζ), we
employ two distinct formulations of the equation of motion, one of which uses the
‘total force’, while the other uses the ‘vortex force’, which is related only to the dynamics
of vorticity. The first mode transition involves a jump in ‘vortex phase’ (between vortex
force and displacement), φvortex, at which point the frequency of oscillation (f) passes
through the natural frequency of the system in the fluid, f ∼ fNwater . This transition
is associated with a jump between 2S ↔ 2P vortex wake modes, and a corresponding
switch in vortex shedding timing. Across the second mode transition, there is a jump
in ‘total phase’, φtotal , at which point f ∼ fNvacuum. In this case, there is no jump in
φvortex, since both branches are associated with the 2P mode, and there is therefore
no switch in timing of shedding, contrary to previous assumptions. Interestingly, for
the high-(m∗ζ) case, the vibration frequency jumps across both fNwater and fNvacuum,
corresponding to the simultaneous jumps in φvortex and φtotal . This causes a switch
in the timing of shedding, coincident with the ‘total phase’ jump, in agreement with
previous assumptions.

For large mass ratios, m∗ = O(100), the vibration frequency for synchronization lies
close to the natural frequency (f∗ = f/fN ≈ 1.0), but as mass is reduced to m∗ = O(1),
f∗ can reach remarkably large values. We deduce an expression for the frequency of
the lower-branch vibration, as follows:

f∗lower =

√
(m∗ + CA)

(m∗ − 0.54)
,

which agrees very well with a wide set of experimental data. This frequency equation
uncovers the existence of a critical mass ratio, where the frequency f∗ becomes large:
m∗crit = 0.54. When m∗ < m∗crit, the lower branch can never be reached and it ceases to
exist. The upper-branch large-amplitude vibrations persist for all velocities, no matter
how high, and the frequency increases indefinitely with flow velocity. Experiments
at m∗ < m∗crit show that the upper-branch vibrations continue to the limits (in flow
speed) of our facility.
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1. Introduction and preliminary work
The problem of vortex-induced vibration of structures is important in many fields

of engineering. It is a cause for concern in the dynamics of riser tubes bringing
oil from the seabed to the surface, in flow around heat exchanger tubes, in the
dynamics of civil engineering structures such as bridges and chimneys, and also in
many other situations of practical importance. The wide range of problems caused
by vortex-induced vibration has led to a large number of fundamental studies,
which are summarized in the comprehensive reviews of Sarpkaya (1979), Griffin &
Ramberg (1982), Bearman (1984), Parkinson (1989), and in the books by Blevins
(1990), Naudascher & Rockwell (1994), and Sumer & Fredsøe (1997). In the present
work, we are interested in one of the most conceptually simple situations of such fluid–
structure interaction: the case of an elastically mounted rigid cylinder constrained to
move transversely to a uniform free stream. There has been a great deal of interest
recently in investigating experimental conditions of low mass and damping. Such
results are at present being compared with both the classical high-mass experiments,
and with direct numerical simulations (DNS) of this flow. Related studies on flexible
cylindrical cantilevers (for example, Vickery & Watkins 1964; Fujarra et al. 1998;
Pesce & Fujarra 2000), on cylinders in a shear flow (Stansby 1976; Griffin 1985;
Balasubramanian & Skop 1996) and on numerical simulations of long flexible cables
(Newman & Karniadakis 1997; Evangelinos & Karniadakis 1999), have also received
renewed attention, fuelled in part by the present interest in the dynamics of offshore
structures.

In the conceptually simple case of the elastically mounted rigid cylinder, there are a
number of fundamental unanswered questions, some of which were recently outlined
by Khalak & Williamson (1999). Related to their points, we raise here the following
questions, as part of the ‘driving force’ for the present work:
• What modes of response exist and what are their corresponding wake vortex

dynamics?
• We seek to understand the well-known ‘phase-jump’ (a jump in the phase between

transverse force and cylinder displacement) that occurs in the synchronization region.
Following the work of Khalak & Williamson (1996, 1997, 1999), we ask the question:
Why can there exist two separate mode jumps at sufficiently low mass and damping?
• What is the effect of mass ratio on the frequency response and on the range of

synchronization?
Before addressing the above points, we shall briefly introduce an equation of

motion generally used to represent the vortex-induced vibrations of a cylinder in the
transverse y-direction (perpendicular to the free stream), as follows:

mÿ + cẏ + ky = F, (1.1)

where m is the total oscillating structural mass (i.e. not including added mass); c
is the structural damping; k is the spring constant; and F is the fluid force in the
transverse direction. When the body oscillation frequency is synchronized with the
periodic vortex wake mode, good approximations to the force, F(t), and the response
displacement y(t), are given by

F(t) = Fo sin (ωt+ φ), (1.2)

y(t) = A sin (ωt), (1.3)

where ω = 2πf; f is the oscillation frequency. The phase angle φ, between the fluid
force and the body displacement, is crucial in determining the energy transfer from the
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fluid to the body, and hence in influencing the amplitude of oscillation, as pointed out
clearly in the previous review papers (e.g. Sarpkaya 1979; Bearman 1984). We select
a set of relevant non-dimensional parameters in this problem, which are presented in
table 1.

The response amplitude and frequency may be derived in a straightforward manner
from equations (1.1)–(1.3), and are formulated here, along the lines of Khalak &
Williamson (1999), as follows:

A∗ =
1

4π3

CY sin φ

(m∗ + CA)ζ

(
U∗

f∗

)2

f∗, (1.4)

f∗ =

√
(m∗ + CA)

(m∗ + CEA)
, (1.5)

where CA is the potential flow added-mass coefficient (CA = 1.0 for a circular cylinder),
and CEA is an ‘effective’ added-mass coefficient that includes an apparent effect due
to the total transverse fluid force in phase with the body acceleration (CY cosφ):

CEA =
1

2π3A∗

(
U∗

f∗

)2

CY cos φ. (1.6)

A fundamental question, regarding such an elastically mounted system, is how
the peak response amplitude (A∗max) will vary as a function of {m∗, ζ}, where ζ is
the damping ratio. Much discussion on this point, concerning especially the most
recent work, is reviewed in the ‘Review and preliminary results’ section of Khalak
& Williamson (1999), and only a brief outline of this point will be presented here.
Generally, in the literature, A∗max has been plotted versus a parameter, SG, which is
proportional to the product of mass and damping, and is defined as

SG = 2π3S2(m∗ζ), (1.7)

where S is the Strouhal number for the static cylinder. This ‘Skop–Griffin’ parameter
(SG) was used in the first comprehensive compilation and plot of existing peak
amplitude (A∗max) data as a function of SG, by Griffin and co-workers in the 1970s
(see Griffin, Skop & Ramberg 1975), and we define such a plot here as a ‘Griffin’
plot. The logic in choosing a combined mass–damping parameter, like SG, comes
from observation of equation (1.4) for A∗, and has been discussed in many previous
papers. Bearman (1984), for example, discusses in his review that for large mass ratio
(m∗ � 1), the actual cylinder oscillation frequency (f) at resonance will be close to
the vortex shedding frequency for a static cylinder (fvo), and also close to the system
natural frequency (fN), i.e. f ≈ fvo ≈ fN and thus f∗ = f/fN ≈ 1.0. One may also
note that for large m∗, in equation (1.5) and with CA, CEA = O(1), f∗ ≈ 1.0. Hence,
at resonance, the parameter (U∗/f∗) = (U/fD) ≈ (U/fvoD) = 1/S , which is thus
close to 5.0. The assumption is therefore often made that both (U∗/f∗) and f∗ are
constants, under resonance conditions, giving

A∗max ∝ CY sin φ

(m∗ + CA)ζ
. (1.8)

Under these assumptions, A∗max is a function of the product of mass and damping
(m∗ + CA)ζ. Concerns over the use of such a combined mass–damping parameter
at low mass ratios have been clearly discussed by Sarpkaya (1978, 1979) and by
Zdravkovich (1990). However, the recent results of Khalak & Williamson (1999),
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Mass ratio m∗
m

πρD2L/4

Damping ratio ζ
c

2
√
k(m+ mA)

Velocity ratio U∗
U

fND

Amplitude ratio A∗
A

D

Frequency ratio f∗
f

fN

Transverse force coefficient CY
F

1
2
ρU2DL

Reynolds number Re
ρUD

µ

Table 1. Non-dimensional groups. In this paper, in places where f∗ is defined without a subscript,
it is taken to be the frequency ratio (f/fN), where f is the oscillation frequency, and fN is the
natural frequency in water. The added mass, mA, is given by mA = CAmd, where md is the displaced
fluid mass and CA is the potential added-mass coefficient. (CA = 1.0 for a circular cylinder). In
the above groups, D = cylinder diameter, L = cylinder length, ρ = fluid density, U = free-stream
velocity, µ = viscosity.

show that even for low m∗ of the order of 2 and very low mass–damping down to
the value (m∗ +CA)ζ ∼ 0.006, the use of a single combined mass–damping parameter
collapses peak amplitude data very well, even for a wide independent variation of
parameters m∗ and ζ.

There exist two types of response character for such an elastically mounted sys-
tem, depending on whether the combined mass–damping parameter (m∗ζ) is high, or
whether (m∗ζ) is low, as pointed out by Khalak & Williamson (1999). A well-known
study of the response of an elastically mounted cylinder at high (m∗ζ) ∼ 0.25 was
conducted by Feng (1968). As shown schematically in figure 1(a), he observed two
different branches of amplitude response, which we describe as an ‘initial’ branch,
corresponding to the highest amplitudes reached, and a ‘lower’ branch. Subsequent
experiments at high (m∗ζ) on a vibrating cable (Brika & Laneville 1993) also demon-
strate two such branches of response. It should be noted here, that in both of these
experiments hysteresis was observed in the transition between the two branches, de-
noted by H in figure 1(a). In contrast to the cases above, the low-(m∗ζ) experiments
of Khalak & Williamson (1996, 1997, 1999) show the existence of three different
branches of response. In addition to the ‘initial’ and ‘lower’ branches, they also find
an ‘upper’ branch of response, as shown schematically in figure 1(b), and thereby
find two mode transitions. They found the transition between ‘initial’ and ‘upper’
branch to be hysteretic, while the transition from ‘upper’ to ‘lower’ branch involved
an intermittent switching of modes.

Maximum amplitude (A∗max) is plotted versus a combined mass–damping parameter,
(m∗+CA)ζ, in figure 2, using data from several investigators, in what we call a ‘Griffin’
plot. The set of data marked ‘upper’ corresponds with ‘upper’-branch peak amplitudes,
while the data denoted by ‘lower’ are for ‘lower’-branch peak amplitudes. The solid
line represents a curve fit to the data of a large number of investigators, and includes



Vortex modes and frequency response of a freely vibrating cylinder 89

High-m*f type

Low-m*f type

Initial excitation branch

Lower branch
H

I
Lower branch

Upper branch

H

Initial excitation
branch

A
-m

ax
im

a 
de

te
m

in
ed

 m
ai

nl
y 

by
 m

*f

U* regime determined by m*
(when  m*f = constant)

(a)

(b)

Figure 1. The two distinct types of amplitude response are shown here schematically. (Vertical axes
represent A∗ and horizontal axes represent U∗.) The Feng-type of high-(m∗ζ) response exhibits only
two branches (initial and lower), while the low-(m∗ζ) type of response (Khalak & Williamson 1999)
exhibits three branches (initial, upper and lower). The mode transitions are either hysteretic (H) or
involve intermittent switching (I). The range of synchronization is controlled primarily by m∗ (when
m∗ζ is constant), whereas the peak amplitudes are controlled principally by the product of m∗ζ.

a collection of some quite different types of experiments, compiled originally by
Griffin (1980), and updated recently by Skop & Balasubramanian (1997). The curve
fit has classically been used to represent not only oscillations of rigid cylinders but
also flexible cantilevers and pivoted cylinders. However, the recent data of Khalak &
Williamson (1999), and of Hover, Techet & Triantafyllou (1998), for strictly elastically
mounted rigid cylinders depart substantially from the curve fit. It is also of interest
that the maximum response (A∗max ≈ 0.6) coming from DNS of this flow at low
Reynolds numbers (Re ∼ 200) is markedly lower than the data for high Reynolds
number experiments. We believe that this large difference in response amplitude is
a Reynolds number effect, since the experimental amplitudes in Anagnostopoulos
& Bearman (1992), also at low Re ≈ 90–150, exhibit a similar maximum response
(A∗max ≈ 0.55) to the DNS computations. The bull’s eye symbols in figure 2 correspond
to the present experiments, one pair being for the low-(m∗ζ) type of response, and the
other for the high-(m∗ζ) type of response. A comprehensive study of the amplitudes,
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Figure 2. ‘Griffin’ plot showing peak amplitude A∗max versus a combined mass–damping parameter
[(m∗ + CA)ζ]. The ‘bull’s eye’ symbols (�) indicate the cases studied in detail in this paper. +, Feng
(1968); �, Hover et al. (1998); e, Khalak & Williamson (1999); ——, Skop & Balasubramanian
(1997).

forces, vortex dynamics and mode jumps of these two distinct types of response forms
the basis of this paper.

An important feature of the dynamics of such elastically mounted systems is the
jump in phase (φ), between the transverse force (CY ) and the cylinder displacement
(y), that occurs when the response changes modes, as in figure 1(a). A number of
forced-vibration studies (for example, Bishop & Hassan 1964; Stansby 1976; Bearman
& Currie 1979; Gopalkrishnan 1993) have also shown either a jump or a sharp change
in phase, in the central part of the synchronization regime (as defined by the range
of U∗ over which synchronization takes place). Zdravkovich (1982) first showed, by
observing flow-visualization from previous studies, that this phase jump was connected
to a switch in the timing of vortex shedding, and this has since been confirmed from
forced vibration by Gu, Chyu & Rockwell (1994) at low amplitude (A∗ = 0.2), and
from the numerical simulations of Lu & Dalton (1996). From recent two-dimensional
simulations at Re = 500, Blackburn & Henderson (1999), put forward the idea that
this switch in timing is caused by a competition between two different mechanisms of
vorticity production.

A number of investigators also report a change in the pattern of vortex formation,
as one varies normalized velocity U∗ or amplitude A∗. Griffin & Ramberg (1974) first
showed, for large-amplitude forced-vibration experiments (at low Re ≈ 190), that an
asymmetric mode occurred whereby three vortices were formed per cycle. Subsequent
forced-vibration studies by Williamson & Roshko (1988), over a wide range of A∗
and U∗ (at Re = 300–1000), show a number of different vortex formation modes,
which are defined, for example, as ‘2S’ indicating 2 single vortices formed per cycle,
‘2P’ meaning 2 pairs of vortices formed per cycle and a ‘P+S’ mode comprising a
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pair of vortices and a single vortex per cycle, like the asymmetric mode observed in
Griffin & Ramberg (1974). They suggested that the phase jump corresponds with a
change of mode from ‘2S’ to ‘2P’. Ongoren & Rockwell (1988) found in the case of
streamwise vibrations at very low amplitudes (A∗ ≈ 0.13), an equivalent pattern to the
‘2P’ mode.

Digital particle image velocimetry (DPIV) measurements by Sheridan et al. (1998)
confirm the existence of the 2P mode in forced transverse vibrations. Fascinating
wake dynamics have been found by Techet, Hover & Triantafyllou (1998), in the
case of the forced vibrations of a tapered cylinder, where a ‘hybrid’ mode was found
to comprise the 2P and 2S modes occurring simultaneously at different spanwise
locations along the cylinder. Interestingly, a number of accurate two-dimensional
numerical simulations, at low Re ∼ 200 (for example, Meneghini & Bearman 1995;
Blackburn & Henderson 1995), and at Re = 500 (Blackburn & Henderson 1999),
as well as some experiments (Jeon, Shan & Gharib 1995; Atsavapranee et al. 1998),
clearly do not find the 2P mode. Evangelinos & Karniadakis (1999) have recently
conducted simulations at Re = 1000. In agreement with our experiments, they find
vortex deformations and multiple vorticity concentrations in the near wake. However,
interestingly, they find transient mixtures of (P+S) and 2P modes in the near wake,
with possible formation of a 2S mode, or ‘general wake instability’, as the flow travels
downstream. They conclude that their simulations indicate ‘the (P+S) pattern may
also be associated with the upper branch’. There has thus been some debate as to
the existence of the 2P mode as a steady-state pattern. In the present paper, we shall
show results from DPIV and response measurements which confirm the existence of
a steady-state 2P mode. In other words, this is not a transient mode, as suggested
by the results in some previous studies, and it is found to be a remarkably periodic
mode which occurs for indefinite time.

Brika & Laneville (1993) and Khalak & Williamson (1999) both show from
flow-visualizations in free vibration that the jump from the initial branch to the
lower branch corresponds with a mode change from 2S to 2P, as proposed in the
forced vibration studies of Williamson & Roshko (1988). The ingenious virtual free
vibration experiments by Hover et al. (1998) yield a complete response plot which
corresponds well with the map of vortex modes from Williamson & Roshko (1988),
again suggesting that the initial branch is the 2S mode, and the lower branch is
the 2P mode. The flow visualizations mentioned earlier are indicative of the 2S and
2P modes, but at high Re ∼ 5000, the technique is somewhat unclear. As regards
the upper branch, the flow visualization in Khalak & Williamson (1999) was not of
sufficient resolution to determine categorically the existing wake vortex mode. We
shall set out, in this paper, to provide clear evidence of the vortex formation modes
corresponding, not only to the initial and lower branches, but also to the upper
branch, by the use of the digital particle image velocimetry (DPIV) technique, to
determine velocity and vorticity fields in the wake.

Another important feature of these systems is ‘synchronization’ or ‘lock-in’, the
definition of which has led to some recent discussions in the literature. Typically
this phenomenon is described as involving a synchronization of the vortex formation
frequency (fv), and the body oscillation frequency (f) with the natural frequency
(fN), such that f∗ = f/fN is close to unity, over a range of velocity, U∗ (see Blevins
1990 and Sumer & Fredsøe 1997). This classic scenario is approximately valid for
large m∗ = O(100). However, at the low mass ratios typically found for a structure
vibrating in water m∗ = O(10), Moe & Wu (1990), Khalak & Williamson (1997) and
Gharib et al. (1998) observe a marked departure of f∗ from unity during ‘lock-in’.
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In fact, Khalak & Williamson (1997) find values of f∗ ≈ 1.4 during synchronization.
However, one should expect to find such a departure of f∗ from unity, based on
the discussion of Bearman (1984), and based on the ‘added mass coefficient’ data
of Sarpkaya (1978). We cannot thus define lock-in or synchronization such that the
shedding frequency is necessarily close to the natural frequency. Khalak & Williamson
(1999) hence suggested a more suitable definition of synchronization as the matching
of the frequency of the periodic wake vortex mode with the body oscillation frequency.
Correspondingly, the fluid force frequency must match the shedding frequency, which
is the useful definition of lock-in used by Sarpkaya (1995).

The widening of the synchronization regime (as measured by a range of U∗) is
another important effect of low m∗, and was first seen in the experiments of Ramberg
& Griffin (1981). The recent experiments of Khalak & Williamson (1999), where the
mass–damping (m∗ζ) was maintained at a very low value, show a significant increase
in the regime of synchronization, relative to Feng’s (1968) original work. However, by
using the actual oscillation frequency (f) rather than the still-water natural frequency
(fN) to form a normalized velocity, i.e. by using (U∗/f∗) = (U/fD), rather than
simply U∗, they were able to obtain a good collapse of a set of response plots, for
a wide range of m∗. The collapsed amplitude response branches were also found to
match well the Williamson & Roshko (1988) map of vortex wake patterns from forced
vibration studies. A ‘true’ reduced velocity, similar to U∗/f∗, has been used by Moe
& Wu (1990) and Hover et al. (1998) to compare free-vibration results with forced-
vibration experiments, and an equivalent parameter (Vr St) was used by Sarpkaya
(1995).

In summary, the case of an oscillating body in water is associated with relatively
small mass ratios, m∗ = O(10), which leads to an increase of synchronized oscillation
frequency f∗ > 1.0, and to an increase in the regime of synchronization. However, in
this paper we would like to predict the levels of f∗ through this regime, as a function
of these low mass ratios, m∗. We shall present simple quantitative predictions of both
oscillation frequency and regime of synchronization.

Following a description of the experimental methods in the next section (§ 2),
we shall present a set of amplitude and frequency plots, and force measurements,
corresponding to two distinct cases: first (in § 3), the case of low (m∗ζ) comprising the
initial–upper–lower response branches; and secondly (in § 4), the case of high (m∗ζ)
comprising only the initial–lower branches. We shall introduce the concept of using
two distinct phases to characterize the fluid–structure interaction. At high (m∗ζ), the
classical phase, φ, between the total fluid force and displacement exhibits a jump
during the transition between initial and lower branches, as is well known. However,
at low (m∗ζ), we have three principal response branches, and therefore two mode
transitions. By introducing a ‘vortex phase’, φvortex, defined as the phase angle between
the ‘vortex force’ and displacement, we show that the initial ↔ upper transition is
associated with a jump in vortex phase φvortex, which then corresponds with a switch
in the timing of vortex shedding. This is quite distinct from the jump in φ, which
occurs at the upper–lower transition, and where there is no distinct switch in timing
of vortex shedding. The classical assumption that the phase (φ) jump is necessarily
associated with a jump change in the timing of vortex formation is therefore not correct
for low mass–damping.

The modes of vortex formation for each of the three branches at low (m∗ζ), and
for the two branches present at high (m∗ζ), are shown clearly from DPIV, in § 5. In
§ 6, we shall examine the effect of mass ratio m∗ on the frequency response f∗ during
synchronization. We shall obtain a simple equation which accurately predicts the
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frequency f∗ in the lower branch, for small mass ratios m∗, and which will uncover
the existence of a critical mass ratio m∗crit below which the regime of synchronization
becomes infinitely large. Following this, we present conclusions in § 7.

2. Experimental details
The present experiments were conducted using a hydroelastic facility, which is de-

scribed in detail in Khalak & Williamson (1996, 1999), in conjunction with the Cornell-
ONR Water Channel. The hydroelastic facility comprises air bearings mounted above
the channel test section, which allow a vertical cylinder in the fluid to move transverse
to the free stream. The turbulence level in the test section of the water channel was
less than 0.9%, in the 15 in.× 20 in. (0.381 m× 0.508 m) cross-section, over the range
of free-stream velocities U (0.04–0.32 m s−1) used in this study. Cylinders of diameter
0.0381 m and 0.0127 m were used for the low mass–damping and high mass–damping
cases, respectively. The corresponding length–diameter ratio was 10 and 20, respect-
ively. The mass ratio was varied by adding mass to the oscillating structure above the
water channel. In all the experiments, end plates were fixed to the test section and
placed 2 mm below the bottom of the cylinder (but not in contact with the cylinder),
to encourage two-dimensional shedding, as discussed in Khalak & Williamson (1996).

A two-axis force balance utilizing LVDTs (linear variable displacement transducers)
was used to measure lift and drag forces simultaneously with the measurement
of displacement, while the displacement itself was measured using a non-contact
(magnetostrictive) position transducer. In addition, the wake velocity field was also
simultaneously measured, using DPIV. This is the first time, in free vibration, that force
and wake vorticity have been simultaneously measured. All of the above measurements
could be synchronized using a timing circuit that was triggered by the zero crossing
of the position signal.

For the purpose of employing DPIV, the flow was seeded with 14-micron silver-
coated glass spheres, which were illuminated by a sheet of laser light from a 5 W
continuous argon ion laser. Images of the particles were captured using a high-
resolution CCD Kodak Megaplus (1008 × 1018 pixels) camera, and transferred in
real time to a PC. A mechanical shutter, in the path of the laser light, was used to
reduce the exposure time of the frame, and to control the position of this exposure
on the frame. This enabled acquisition of particle images that were separated by time
periods less than the standard 33 ms, which corresponds with a camera operating at
30 Hz. This mechanical shutter was also controlled by the timing circuit mentioned
earlier. Pairs of particle images were analysed using cross-correlation of sub-images
described by Adrian (1991), and implemented digitally in the manner described by
Willert & Gharib (1991) and Westerweel (1993). We used a two-step windowing
process (with window shifting) to obtain particle displacements between image pairs,
to deduce the velocity field. The viewing area of the camera was 28.4 cm×28.7 cm (for
the bigger diameter cylinder) and 12.8 cm × 12.93 cm (for the smaller cylinder), with
corresponding time between images being 33 ms and 12.7 ms, respectively. In both
cases, 64× 64 pixel interrogation boxes were used for the first correlation followed by
32×32 pixel boxes for the second correlation. The number of particles in a 32×32 pixel
window was approximately of the order of 15, high enough to give strong correlations,
although the volume fraction of the tracer particles was very small, of the order of
2× 10−6. A box overlap of 50% was used in the second correlation, which resulted in
a set of 3600 vectors (60× 60) for a typical velocity field.

All the obtained images, and hence the DPIV velocity fields, were phase referenced
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with respect to the position signal. This allowed possible phase averaging (over 10
cycles) of the velocity fields, along the lines of Gu et al. (1994). This is useful at the
high Reynolds numbers of interest (Re ∼ 1000 to 10 000) in the present study, to
obtain a clear picture of the dynamics of spanwise vorticity, without the presence of
smaller weak structures resulting from intermittent small-scale three-dimensionality
in the flow.

Instantaneous amplitude, frequency and phase information shown in the paper have
been computed with the use of the Hilbert transform (see Khalak & Williamson 1997
and Appendix in 1999 for details). In the case where there is intermittent switching
between two modes, the instantaneous information from the Hilbert transform has
been used to obtain separate values of the amplitude (as well as frequency and phase)
corresponding to each of the modes, rather than averaging between the two modes.

The order of magnitude of the errors associated with some of the principal nu-
merical quantities obtained from the present study are given in the text close to
the relevant equations. Representative error bars are also indicated for selected data
points that are used to compute such numerical quantities. In most other plots, the
scatter between adjacent points gives an indication of the errors.

The origin of the coordinate system is fixed at the lowest position of the cylinder,
at zero flow speed. The x-axis is downstream, the y-axis is perpendicular to the flow
direction and to the cylinder axis (defined as transverse), and the z-axis lies along the
axis of the cylinder (defined as spanwise).

3. Response and force measurements: case of low (m∗ζ)
As described in the Introduction, the case of low (m∗ζ) yields three principal

branches of response, namely the initial, upper and lower branches. Our choice
of parameters in this section, namely mass ratio, m∗ = 8.63 and damping ratio,
ζ = 0.00151, leads to the peak amplitudes A∗max for the upper and lower branches
which are marked as bull’s eye symbols in the Griffin plot of figure 2. The three
principal response amplitude branches are denoted I (initial), U (upper) and L
(lower) in figure 3. It might be noted that the initial branch is itself divided into a
quasi-periodic sub-regime and a periodic sub-regime (as described further in Khalak
& Williamson 1999). As normalized velocity U∗ is increased, the amplitude jumps up
from the initial to upper branch, reaching a maximum amplitude of A∗max ≈ 0.85, and
thereafter the amplitude drops discontinuously from the upper to the lower branch
(A∗max ≈ 0.6). As shown in Khalak & Williamson (1999), the initial↔ upper transition
is hysteretic while the upper ↔ lower transition involves an intermittent switching of
modes. Outside these transition regions, each of the three response branches is close to
being periodic as shown by typical time traces in figure 4 of cylinder displacement and
phase (the phase being between total transverse force and displacement). Ultimately,
at high U∗ ≈ 10, the wake becomes desynchronized, and the amplitude drops down
to small values. It should be noted that in the intermittent upper ↔ lower transition,
in figure 3(a), care has been taken to separate upper and lower branch data, by the
use of the Hilbert transform.

The corresponding frequencies of oscillation (f) for the different response branches
are shown in figure 3(b). We may observe that over most of the synchronization
regime (U∗ ∼ 5.5 up to 10), the frequency lies above unity (f∗ ≈ 1.10). This departure
from unity might be expected if we recall equation (1.5):

f∗ =

√
(m∗ + CA)

(m∗ + CEA)
,
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and note that for low mass ratio, m∗ becomes comparable to CA and to CEA, while CEA
is itself influenced by the force component in phase with body acceleration (CY cosφ).

3.1. Classical use of total force (CY ) and phase (φ)

The transverse force commonly used in the literature is the total fluid force CY . The
corresponding phase φ between total force and the displacement, as well as CY , are
presented in figure 5(a), as a function of normalized velocity. The maximum transverse
force (CY ) occurs at the initial↔ upper transition, after which it drops sharply at the
upper↔ lower transition. The corresponding phase angle φ remains slightly above 0◦
throughout the initial and upper branch regimes, and then jumps by almost 180◦ at
the upper↔ lower transition. Such a phase jump is well known in free vibrations, and
has been previously inferred by Feng (1968) (one should note that he measures phase
between a fluctuating surface pressure signal and the displacement), and it has been
directly measured by Khalak & Williamson (1999). We shall see that this jump in φ
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is associated with the oscillation frequency (f) passing through the natural frequency
of the structure in vacuum (fN vacuum).

The equation of motion used to represent the body dynamics in equation (1.1) can
be combined with equation (1.2), which assumes harmonic motion:

mÿ + cẏ + ky = Fo sin (ωt+ φ). (3.1)

Substituting y = A sin (ωt) into the above equation and balancing sin (ωt) terms, gives

Fo cosφ

k A
= 1−

(
f

fN vacuum

)2

, (3.2)

where fN vacuum = 1/2π
√
k/m. One may note from this simple result that, as φ jumps

through the value of 90◦, as one may observe in figure 5(a), then f∗vacuum = (f/fN vacuum)
passes through 1.0. The above ‘classical’ phase jump has also been associated with a
change in the timing of vortex shedding (Zdravkovich 1982). However, a jump in this
phase φ does not necessarily have to be associated with a switch in the timing of vortex
shedding. We shall prove this point in subsection § 3.2.

One may ask: how can one write the equation of motion in such a manner as to
indicate necessarily when a jump in the timing of vortex formation may be found?
A way to achieve this is to rewrite the equation of motion, retaining only the ‘vortex
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force’ on the right-hand side. (‘Vortex force’ is related to vortex formation and the
convection of shed vorticity; Lighthill 1986). If the phase of this vortex force exhibits
a jump, then necessarily we expect a jump in the timing of vortex shedding. We shall
use this approach in the next section.

3.2. Vortex force (Cvortex) and vortex phase (φvortex)

It was shown by Lighthill (1986) that the total fluid force (Ftotal) can be conveniently
decomposed into a ‘potential force’ component Fpotential , given in this case by the
potential added-mass force, and a ‘vortex force’ component (Fvortex) that is due to the
dynamics of what is called the ‘additional vorticity.’ (‘Additional vorticity’ refers to the
entire vorticity in the flow field minus ‘part of the distribution of vorticity attached
to the boundary in the form of a vortex sheet allowing exactly the tangential velocity
(slip) associated with the potential flow,’ as stated by Lighthill. A full knowledge
of the vorticity field would yield the vortex force through the concept of vorticity
impulse: F vortex = − 1

2
ρ(d/dt)

∫
(x× ωa) dV , where ωa is the additional vorticity. This

decomposition of the flow field to yield a potential force and vortex force can be
understood to be a matter of convenience, although it is very useful in the present
context. The vortex force is related in a definite way to vortex dynamics, and to the
convection of vorticity. Any jumps in vortex force would necessarily correspond with
sharp changes in the process of vortex formation.

For convenience, we now drop the subscript (Y ) to denote the transverse force. The
vortex force Fvortex, can thus be computed from

Fvortex = Ftotal − Fpotential . (3.3)

Normalizing all the forces by ( 1
2
ρU2DL) gives the simple equation

Cvortex(t) = Ctotal(t)− Cpotential(t). (3.4)

The instantaneous potential added-mass force Fpotential acting on the cylinder is
given by

Fpotential(t) = −[CA md ÿ(t)], (3.5)

where md is the displaced fluid mass: md = (πρD2L/4). Normalizing this force by
( 1

2
ρU2DL), and substituting for y = A sin (t), we find the potential force coefficient is

given by

Cpotential(t) = 2π3

(
y(t)/D

)(
U∗/f∗

)2
. (3.6)

It can be seen from the above equation that the instantaneous potential added-mass
force Cpotential(t) is always in-phase with the cylinder motion y(t), as one might expect.

Let us now introduce an equation of motion where the fluid force retained on
the right-hand side is the vortex force only. (Henceforth, any force F(t) refers to the
instantaneous force, otherwise F refers to the magnitude of this force).

Equation of motion using ‘vortex force’:

(m+ mA)ÿ + cẏ + ky = Fvortex sin (ωt+ φvortex). (3.7)

(As an aside, the absorption of the added mass (mA) into the total oscillating mass
has sometimes been used in texts on fluid–structure interactions (e.g. Blevins 1990;
Sumer & Fredsøe 1997), and sometimes it is left on the right-hand side of the equation
of motion, as in Bearman’s (1984) review. However, in many cases, the fluid force
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is uniformly described as the ‘lift force’, whether it includes or excludes the ‘added
mass.’ There is often no apparent reason to choose one approach or the other, and
these differences have been the subject of debate. In this work, we purposefully adopt
both approaches simultaneously.) The point here is to highlight the ‘vortex phase’,
φvortex, defined as the phase between vortex force and displacement. For the sake of
clarity, we rewrite here the original equation of motion, but now defining total force
as Ftotal , and writing the ‘classical’ phase φ, as the ‘total phase’ φtotal:

Equation of motion using ‘total force’:

mÿ + cẏ + ky = Ftotal sin (ωt+ φtotal). (3.8)

We have thus defined two distinct phases, which are reiterated below for clarity:

‘Vortex phase’ = φvortex = Phase between vortex force and displacement,
‘Total phase’ = φtotal = Phase between total force and displacement.

Interestingly, there is no clear jump in ‘vortex phase’ φvortex at the upper–lower
branch transition, as may be seen in figure 5(b), contrary to one’s expectation, based
on past studies, such as Zdravkovich (1982). Therefore one might suspect that the
modes of vortex formation between upper and lower branches are similar. This ‘clue’
will be confirmed later from our vorticity flow field measurements. On the other
hand, between the initial and upper branches, there is a vortex phase jump. There
will necessarily be a switch in timing of the cyclic vortex formation, which is also
later confirmed by flow field measurements. There are thus two phase jumps: namely
a large jump in vortex phase (φvortex) at the initial ↔ upper transition, which is
associated with a switch in the timing of vortex shedding; and a large jump in total
phase (φtotal), at the upper ↔ lower transition, which is not associated with a switch
in timing of the shedding.

A striking feature of the variation in vortex force (Cvortex), in figure 5(b), is the
peak in the lower branch, despite the total force (Ctotal) having rather small values.
Although this seems surprising at first, it is actually reasonable to expect a small total
force Ctotal , as there is a considerable amount of cancellation between the out-of-phase
Cvortex(t) and the in-phase Cpotential(t), as shown in the lower-branch force signals of
figure 6.

Typical relationships between potential force, vortex force and the total force, for
the three different response branches, are shown in figure 6. (These time traces are the
result of averaging over 10 cycles). Each case in figure 6 corresponds with the data
points marked by a ‘bull’s eye’ in the amplitude response plot of figure 4(a) at three
different U*. One can now understand the total force magnitude for the different
response branches, as observed in figure 5. In the initial branch, the total force
reaches a large value, because the vortex force component Cvortex and the potential
force component Cpotential are in phase. In the upper branch, although Cvortex and
Cpotential are out of phase, the large amplitude of this branch causes a large potential
force, which far exceeds the vortex force, leading to a large total force. Finally, in the
lower branch, the out-of-phase force components become quite comparable, and the
total force is quite diminished.

It was shown earlier that the jump in total phase φtotal was associated with
f∗vacuum = (f/fN vacuum) = 1.0. One might question what frequency condition holds
when φvortex jumps. Inspecting the equation of motion using ‘vortex force’ in (3.7),
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Figure 7. Schematic diagram of the low-(m∗ζ) type of response showing the three principal
branches (initial, upper and lower), and correspondingly the two jump phenomena.

and using similar textbook results as for equation (3.2) earlier, we find

Fvortex cosφvortex
k A

= 1−
(

f

fN water

)2

. (3.9)

Therefore, as φvortex jumps through 90◦, as observed in figure 5(b), then f∗water =
(f/fN water) passes through 1.0. This condition on f∗water (or f∗) is evident from figure
3(b) at the initial ↔ upper transition.

A summary sketch is included in figure 7, to show with clarity how there are two
distinctly different jumps between modes, in contrast with the classical high-(m∗ζ) type
of vibration where only a single mode jump is observed. In essence, the mode change
initial → upper is associated with a jump in vortex phase φvortex, as the response
frequency passes through f∗water = f/fN water = 1.0. The second mode change upper →
lower corresponds with a jump in total phase φtotal , as the response frequency passes
through f∗vacuum = f/fN vacuum = 1.0.

To make very clear this significant point regarding mode transitions we include a
shorthand summary:

Initial ↔ upper transition:[
f

fN water

]
∼ 1 ⇒ f∗water ∼ 1⇒ φvortex jump.

Upper ↔ lower transition:[
f

fN vacuum

]
∼ 1 ⇒ f∗vacuum ∼ 1⇒ φtotal jump.

As a final point, we show here how one of the phases (say, φvortex) may experience
a large jump, while the other phase (φtotal) might not exhibit any significant change.
Let us consider the two equations of motion (3.7) and (3.8), and write equations
for the relevant phases (as may be found in many dynamics texts; see for example
Naudascher & Rockwell 1994, p. 10) as follows.
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The equation of motion using ‘vortex force’

(m+ mA)ÿ + cẏ + ky = Fvortex sin (ωt+ φvortex)

gives an equation for φvortex as

tanφvortex =

[
2 ζf∗water

1− f∗water2
]
. (3.10)

The equation of motion using ‘total force’

mÿ + cẏ + ky = Ftotal sin (ωt+ φtotal)

gives an equation for φtotal as

tanφtotal =

[
2ζf∗vacuum

1− f∗vacuum2

]
. (3.11)

We shall first consider the low-(m∗ζ) type of response, where there are two distinct
mode transitions. Taking the first mode transition, equations (3.10) and (3.11) show
that as f∗water jumps through 1.0, the phases change typically as follows (noting here
that ζ is very small):

(tanφvortex) jumps from [small +] → [small−],

(tanφtotal) jumps from [small +] → [slightly bigger +];

φvortex jumps from [5◦] → [175◦] ⇒ large jump in φvortex,

φtotal jumps from [5◦] → [6◦] ⇒ small change in φtotal .

(Angles in degrees are for illustration only, and are not precise.)
Looking now at the second mode transition, as f∗vacuum passes through 1.0, typical

changes in phase are

(tanφvortex) jumps from [small −] → [small −],

(tanφtotal) jumps from [small +] → [small −];

φvortex jumps from [175◦] → [176◦] ⇒ small change in φvortex,

φtotal jumps from [5◦] → [175◦] ⇒ large jump in φtotal .

We conclude that, at the first mode transition, φvortex experiences a massive jump
of around π. On the other hand, the total phase φtotal indeed jumps, but by an almost
imperceptibly small amount. At the second mode transition, φtotal jumps significantly
by around π, while in this case φvortex jumps almost imperceptibly. Thus, the large
jumps are only for φvortex at the first mode transition, and for φtotal at the second
mode transition.

Finally, in the case of high (m∗ζ), for example for the Feng-type experiments in figure
8, it is apparent that both phases, φvortex and φtotal , exhibit a large jump at the mode
transition initial ↔ lower. If we now look ahead to the frequency response for high
(m∗ζ) in figure 8(c), we see the interesting result that the oscillation frequency jumps
through both fN water and fN vacuum at the same point, inducing simultaneous jumps in
both φvortex and φtotal . This further identifies the two-mode high-(m∗ζ) type of response
as being quite distinct from the three-mode low-(m∗ζ) type of response. We shall briefly
study the high-mass–damping type of response in the next section.
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At this high (m∗ζ), two response branches are seen, namely the initial and lower branches. Case of
high (m∗ζ) (m∗ = 320, (m∗ + CA)ζ = 0.251). An enlarged view of the frequency data in (c) indicates
a small but distinct jump in f∗ at the initial ↔ lower transition. •, Present data; �, Feng (1968);
· · · ·, Williamson & Roshko (1988) map of wake modes; �, points where wake vorticity is measured.
In (b) ×, transverse force frequency in the desynchronized regime.

4. Response and force measurements: case of high (m∗ζ)
In contrast to the low-(m∗ζ) type of response, the high-(m∗ζ) one exhibits only two

distinct branches of response, namely the initial and lower branches, the upper branch
being absent here. The mass–damping parameter for this case, (m∗ + CA)ζ = 0.251,
has been specifically chosen to be very close to the mass–damping of Feng (1968) for
his lowest-damped case, as shown in the Griffin plot of figure 2. It should also be
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Figure 9. Initial ↔ lower branch transition. High-(m∗ζ) case. Time trace of displacement showing
an intermittent switching between the two modes, occurring over enormous time scales (U∗ = 5.73).

noted that the higher value of amplitude A∗max in the Griffin plot corresponds with
the peak amplitude of the initial branch (the left-hand response branch in figure 8a),
while the smaller A∗max in the Griffin plot is the peak amplitude of the lower-branch
response (the right-hand branch in figure 8a). As normalized velocity is increased,
the initial-branch amplitude rises continuously to the maximum response amplitude
A∗max ≈ 0.52, and thereafter the amplitude drops sharply to A∗max ≈ 0.42 in the lower
branch. This transition from initial→ lower branch involves an intermittent switching
between the two modes, with a very long time period of switching, of the order of
a few hundred oscillation cycles, as shown in the time trace of figure 9. (This would
make it somewhat problematic to detect in DNS computations.)

Comparing our amplitudes to those of Feng (1968), also shown in figure 8(a), we
find a very similar behaviour in the initial branch, with almost exactly the same
value, A∗max ≈ 0.52, for the peak amplitude reached. However, in the lower branch our
amplitudes are substantially larger than those of Feng. The reason for this difference
is not known, but it might be associated with the fact that no end plates were used
in Feng’s experiment to maximize spanwise correlation. This difference in amplitudes
could in turn be the cause of the difference in the type of transition between the
initial and lower branches, from hysteretic in Feng’s case to intermittent switching in
our case.

The amplitude response of figure 8 is overlaid by the boundaries for different vortex
formation modes, as found from forced-vibration studies in Williamson & Roshko
(1988). Corresponding to their suggestions, this indicates that the continuous initial
branch will be associated with the 2S mode, and the lower branch will be associated
with the 2P mode, although the boundaries may need to be shifted slightly to take
into account the different Reynolds numbers. We shall show later from DPIV vorticity
measurements that the initial branch indeed corresponds with the 2S mode of vortex
wake, while the lower branch corresponds with the 2P mode.

The corresponding frequency response f∗, shown in figure 8(b), is quite differ-
ent from the low-(m∗ζ) case, and remains close to unity over the entire range
of synchronization. This scenario is to be expected, because the large mass ratio



Vortex modes and frequency response of a freely vibrating cylinder 105

0

45

1.2

0.8

0.4

0

180

135

90

45

0

0.8

0.4

0

180

C
to

ta
l r

m
s

φ
to

ta
l 

(d
eg

.)
φ

vo
rt

ex
 (d

eg
.)

C
vo

rt
ex

 r
m

s

L

L

I

L
I

L

I

I

(a)

(b)

135

90

2 4 6 8 10

U*

Figure 10. Force and phase angle variation with U∗: (a) total force and (b) vortex force. A
simultaneous large jump in φtotal and φvortex occurs at the initial ↔ lower transition. Case of high
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m∗ = 320 � CA, CEA; and from equation (1.5), f∗ ≈ 1.0. Interestingly, even after the
wake is desynchronized, the cylinder oscillation frequency (f) does not jump back
to the non-oscillating vortex shedding frequency (fvo), but remains close to fN (i.e.
f∗ = f/fN ≈ 1). On the other hand, the peak frequency in the transverse force
spectrum follows closely the non-oscillating shedding frequency (fvo) when the wake
de-synchronizes. Feng (1968) found a similar behaviour in his frequency variation
in the de-synchronized regime, the only difference being that in his case, the peak
frequency was obtained from the spectrum of a fluctuating surface pressure signal,
rather than from direct force measurements.
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Simultaneous jumps in phases φvortex and φtotal , for this high-(m∗ζ) case, are shown
in the force and phase plots of figure 10, which correspond with f∗ jumping across
both fN water and fN vacuum at the same point in figure 8(c) (see discussion in § 3). The
forces Ctotal and Cvortex, in general show behaviour qualitatively similar to that seen in
corresponding branches of the low-(m∗ζ) case, the maximum Ctotal being in the initial
branch while the maximum Cvortex is reached in the lower branch.

In the low-(m∗ζ) case, considered earlier in § 3, we thus find two jumps since there
are three branches of response. The first transition represents a large jump in φvortex,
while the second transition involves a large jump in total phase φtotal . In the present,
and more classical, case of high (m∗ζ), there are only two response branches and only
one mode transition, comprising simultaneous large jumps in both φvortex and φtotal .
This case therefore corresponds with the classical scenario, whereby the jump between
modes is simultaneously associated with a switch in the timing of vortex shedding.
This point is proven from vorticity measurements in the next section.

5. Modes of vortex formation
There has been some debate concerning the vortex formation modes that might be

associated with the different response branches, as outlined in the Introduction. For
the high-(m∗ζ) case, there is some flow visualization from Brika & Laneville (1993) to
suggest that the initial branch is associated with the 2S mode, while the lower branch
comprises the 2P mode. Similar observations by Khalak & Williamson (1999) have
been made for the case of low (m∗ζ). Such hydrogen bubble and dye visualizations
are quite unclear at these Reynolds numbers (103–104), and perhaps may only be
construed as suggestive of the dominant wake pattern. Visualization was also not
sufficiently clear to determine the wake formation mode for the upper branch, in
Khalak & Williamson (1999), and was not included in that work. Therefore, in this
section, we use DPIV to study the wake vorticity fields for each response branch. These
are the first DPIV measurements (performed simultaneously with force measurements)
that have been made for vortex-induced vibration of a cylinder. We shall find a good
correspondence with a ‘clue’ which appeared in § 3, namely that there exists a ‘vortex
phase’ jump for the initial ↔ upper transition, suggesting the initial and upper wake
modes are different, whereas there is no such jump for the upper ↔ lower transition,
suggesting that the vortex wake modes of the upper and lower branch are the same.

5.1. Low mass–damping type of response

Sequential vorticity fields during a cycle of oscillation for the initial branch clearly
exhibit the classical 2S vortex formation mode as shown in figure 11. The dynamics
of the concentrated regions of vorticity follow a pattern similar to what is found in a
classical von Kármán street. It may be noted that the vorticity fields for each branch
in figures 11–13 correspond with the ‘bull’s eye’ data points in figure 3(a).

The upper-branch sequence in figure 12 exhibits quite a different wake mode, which
is, in essence, a 2P mode. As the body is moving downward in (a), the lower (red)
anticlockwise vorticity concentration, which forms due to the roll-up of the lower
shear layer, is deformed and split into two parts. The upper part forms a weak
anticlockwise vortex beside the much stronger blue clockwise vortex, thus forming
a vortex pair. A similar process of deforming and splitting, for a blue vortex, is
seen as the body moves upwards in (b) and (c), forming a second vortex pair in the
cycle of motion. However, the second vortex of each vortex pair is rapidly weakened
by the relatively stronger first vortex. This is probably due to the intense strain of
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Figure 11. Initial-branch vorticity plots, showing the 2S mode, for low (m∗ζ). Each of these
plots from DPIV is separated by a quarter-period. Blue contours show clockwise vorticity, red
anticlockwise vorticity. Contour levels shown are ωD/U = ±0.4, ±0.8, ±1.2, . . . . U∗ = 5.18,
A∗ = 0.33 as for � symbol of figure 3(a). Re ≈ 3000.

the larger vortex on the weaker vortex. The fact that this wake mode, as it travels
downstream, begins to take on the appearance of a 2S pattern now explains the
difficulty experienced in using flow visualization to interpret this mode in Khalak &
Williamson (1999). The observation of the 2P mode of wake formation is consistent
now with the fact that the upper branch appears within the 2P mode region in the
overlaid Williamson–Roshko (1988) map of wake modes in figure 3.

The fact that there is a jump in the ‘vortex phase’, φvortex, for the initial ↔ upper
transition is consistent with the 2S ↔ 2P vortex mode jump. On the other hand,
the absence of a large jump in φvortex across the upper ↔ lower transition would
suggest that the wake modes for these branches are similar. This is indeed the case,
as may be seen by observing the 2P mode of wake formation for the lower branch in
figure 13. Again one finds deformation, stretching and splitting of the main vorticity
concentrations, for example as we see in the case of the red vorticity in (a), or the
blue vorticity in (c), which lead to the formation of vortex pairs. However, the second
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Figure 12. Upper-branch vorticity plots, showing the 2P mode, for low (m∗ζ). In this 2P mode,
there are two vortex pairs formed per cycle, although the second vortex of each pair is much weaker
(20%) than the first vortex, and decays rapidly. (Contour levels are as for figure 11. U∗ = 5.39,
A∗ = 0.81, Re ≈ 3100.)

vortex of each pair is now considerably stronger than the equivalent second vortex
in the upper-branch 2P mode in figure 12. It is clear that the 2P mode is associated
with the splitting of a region of vorticity in each half-cycle, as discussed from forced
vibrations in Williamson & Roshko (1988). In Appendix A, we use DPIV to compute
the most intense strain rate regions for the different modes here, indicating how for
the 2P mode these are located within the primary vorticity concentrations thereby
inducing the characteristic vortex splitting.

As discussed in the Introduction, a number of accurate simulations at low Reynolds
numbers (Re ∼ 100–200), and two-dimensional simulations at higher Re ∼ 500
(Blackburn & Henderson 1999), as well as some experiments, do not find this 2P
mode. This mode is found as a transient, interchanging with the P + S mode, in the
work of Evangelinos & Karniadakis (1999). This has led to some debate about the
existence of this 2P mode as a steady-state pattern. In order to resolve this debate,
we have included additional material (Appendix B) that provides proof to show that
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Figure 13. Lower-branch vorticity plots, showing the 2P mode, for low (m∗ζ). In this 2P mode, the
second vortex of each vortex pair is now quite comparable (60%) to the first vortex pair. (Contour
levels are as for figure 11. U∗ = 6.40, A∗ = 0.60, Re ≈ 3700.)

this 2P pattern continues indefinitely for the lower branch case presented here. The
apparent disparity between high Reynolds number experiments (Re ∼ 2000 to 4000)
and the simulations seems to be a Reynolds number effect.

It is clear that there is a change in the pattern of vortex formation between the
initial and upper branches, consistent with the jump in ‘vortex phase’, φvortex, between
these branches. In order to illustrate the change in the timing of vortex shedding
between these branches, we show in figure 14(a) the vorticity concentrations when
the body is at the centre of its lateral oscillation. However, we choose to illustrate
the body moving down for the initial branch, and the body moving up for the
upper branch. Although the images are relatively half a cycle different, the near-wake
vorticity concentrations are similar: in each case the lower red (anticlockwise) vortex
has just been shed. In other words, there is a switch in the timing of vortex shedding
by around 180◦ as the modes change 2S↔ 2P at the initial↔ upper transition, which
corresponds well with the jump in phase of the ‘vortex force’, φvortex, by about 180◦
at this transition.
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Figure 14. Switch in timing of vortex shedding between different vortex formation modes. There is
a switch of around 180◦ in the timing of vortex shedding between the initial and upper branches in
(a), and between the initial and lower branches in (b). This indicates also that the upper and lower
branches are in phase with each other. Please note the direction of travel of the body in each of
these images.

A comparison between the initial- and lower-branch vorticity fields in figure 14(b)
again shows similar near-wake vorticity dynamics for body motions that are 180◦
apart. In other words, there is again roughly a 180◦ phase shift in the timing of
vortex shedding. These comparisons in (a) and (b) indicate that the upper and lower
branches have a similar timing of vortex formation, which corresponds well with the
absence of any large jump in the ‘vortex phase’ φvortex between the branches, and with
the fact that the wake formation modes are the same. The ‘vortex phase’ is therefore
a valuable tool to indicate broadly the timing of vortex formation in these problems,
and is being used extensively in ongoing studies.

We shall proceed to look at the circulation strengths of the shed vortices in
these repeatable wake modes, as shown in figure 15. All the circulation strengths
are calculated at the instant when an entire shear layer of one sign is just about
to be shed (for example figure 13(b), for the red counter-clockwise vorticity). The
dashed line marked as ‘static’, in figure 15, indicates the circulation strength of the
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Figure 15. Variation of the circulation strength (Γ ) of the shed vortices as a function of the
normalized velocity U∗: •, stronger vortex; ◦, weaker vortex.

vortices Γ ∗ = Γ/UD = 2.33, corresponding to the stationary cylinder case measured
at Re = 3900. This value is in reasonable agreement with those of Chyu & Rockwell
(1996), and Lin, Vorobieff & Rockwell (1995) at Re ∼ 10 000, who report values of
Γ ∗ ∼ 2.5 to 3 for a stationary body. The most striking feature of the circulation plot,
for the vibrating body, is the remarkably constant circulation value of the stronger
vortex at Γ ∗ ≈ 2.85, along the whole synchronization regime. The strength of the
weaker vortex is Γ ∗ ≈ 0.6 for the upper branch, representing only about 20% of the
circulation of the stronger vortex. In the lower branch, the weaker vortex strength
increases slowly as U∗ is increased, but ultimately only reaches Γ ∗ ≈ 1.7, representing
about 60% of the stronger vortex circulation. The corresponding total shed circulation
per half-cycle, towards the end of the lower branch, increases to Γ ∗ ≈ 4.5, nearly
200% of the value for the stationary cylinder case.

5.2. High-mass–damping type of response

A comparison is now made of the near-wake vorticity dynamics for the two different
response branches, in the case of high mass–damping. The three vorticity plots in
figure 16 are taken when the body has reached its lowest point of the oscillation, but
correspond to different points marked as the ‘bull’s eye’ data points in the amplitude
response plot of figure 8. Case (a) is for a point midway up the initial branch, case
(b) is for the maximum amplitude point at the top of the initial branch, and case (c)
is taken for the lower branch. These vorticity plots indicate that along the whole of
the initial branch, there is a 2S mode of vortex formation; there is no deformation
and splitting to cause the 2P mode, and the initial branch is continuous. On the
other hand, the process of vortex deformation and splitting, in a manner seen in
the previous section, does occur for the lower branch in (c). There is again a good
correspondence between the switch in timing of vortex shedding (compare (a) and
(c)), and the fact that the phase of the vortex force, φvortex, jumps by about 140◦ across
the initial ↔ lower transition.

6. Frequency response
It is known from the work of Griffin & Ramberg (1982) and Khalak & Williamson

(1999) that a reduction of mass ratio can increase the regime of velocity U∗ over
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Figure 16. Wake formation modes for high m∗ζ. Here we show the 2S ↔ 2P mode change at the
initial ↔ lower transition. These cases correspond to data points marked as � in the amplitude
response plot in figure 8(a). Contour levels are as in figure 11. (a) Initial branch – 2S mode
(A∗ = 0.26); (b) initial branch – 2S mode (A∗ = 0.52); (c) lower branch – 2P-mode (A∗ = 0.42).
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Figure 17. Amplitude response for two different mass ratios (m∗) plotted in the Williamson–Roshko
(1988) map of wake modes. In (b), the lower-branch regimes collapse well when plotted against
a different normalized velocity (U∗/f∗)S , as discussed in Khalak & Williamson (1999). •, ◦,
m∗ = 1.19 and (m∗ + CA)ζ = 0.0110; N, 4, m∗ = 8.63 and (m∗ + CA)ζ = 0.0145. Solid symbols
indicate the lower-branch regimes.

which there is synchronization. In this section, all the responses will be of the low-
mass–damping type (for (m∗ + CA)ζ < 0.05), exhibiting three response branches. We
shall show that reduction of m∗ to O(1) can yield a synchronization regime that is
in excess of twice the largest regime we have shown to this point. We shall derive
simple quantitative expressions for the oscillation frequency, f∗, in the lower branch,
which permits us to obtain a relation for the regime of synchronization as a function
of mass ratio, m∗. These functional relations will show that there exists a critical mass
ratio, below which the synchronization regime extends to infinity.

Comparison of the extent of the synchronization regime for two mass ratios may
be seen in figure 17. At moderate mass ratios (m∗ = 8.63), the synchronization regime
extends to about U∗ ≈ 10. When mass ratio is decreased to m∗ = 1.19, this regime
experiences a significant increase, reaching U∗ ≈ 18. However, when the two response
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data sets are plotted versus the parameter (U∗/f∗)S , which is equivalent to (fvo/f)
(or the inverse of the ratio of actual oscillating frequency to the fixed-body shedding
frequency), then the data sets collapse very well. Such a collapse of free-vibration
data using this velocity parameter was first made in Khalak & Williamson (1999),
and it was shown that this result cannot a priori be predicted. Since the case of lower
mass ratio here also has a lower mass–damping, the peak amplitude in the upper
branch is increased, while the lower-branch data sets collapse well. Of importance
in this section, the lower-branch amplitude levels are nearly independent of mass ratio,
m∗, so long as (m∗ + CA)ζ is small. This is consistent with the Griffin plot results in
figure 2, which show that for (m∗ +CA)ζ < 0.05, the lower-branch amplitudes remain
(to reasonable accuracy) at a constant level.

6.1. Lower-branch frequency and the existence of a critical mass ratio (m∗crit)
In this section, we are interested principally in the frequency response, and in possible
means to predict the frequency. Returning to the case of m∗ = 1.19, now plotted
in figure 18, the lower-branch frequency is remarkably constant for the complete
regime of synchronization (and is substantially higher than for our m∗ = 8.63 case
earlier) with a value of f∗lower ≈ 1.8. A similar constant level of frequency in the
lower-branch regime is shown for three different values of m∗ in figure 19. This is a
general characteristic of the lower-branch regime for low mass–damping. This is also
supported by the frequency data of Hover et al. (1998) and Khalak & Williamson
(1999), both under comparable low-mass–damping conditions.

A large set of data for the lower-branch frequency (f∗lower) plotted versus m∗ is
shown in figure 20. These data are from our own experiments, and from Hover et al.
(1998), Khalak & Williamson (1999), and Anand (1985). The data collapse very well
onto a single curve. We would like now to deduce a functional relationship, for low
mass–damping (broadly (m∗ + CA)ζ < 0.05), as follows:

f∗lower = function {m∗}.
Since the response in the lower-branch regime is remarkably sinusoidal and periodic
(see for example Appendix B), the assumed equations of motion (1.1)–(1.3) are an
excellent representation of the dynamics. Therefore the equation for frequency will
take the form of equation (1.5), which we recall is

f∗ =

√
(m∗ + CA)

(m∗ + CEA)
.

The effective added mass (CEA) is a function of {(U∗/f∗)S, A∗}, and will have
a unique value at each point along the lower branch, when plotted in the plane
{(U∗/f∗)S, A∗} as in figure 17(b). Since all lower-branch data sets will lie nearly along
the same line in this figure, almost independently of mass ratio, m∗, then the value
of CEA along this line will be independent of m∗. For a given value of m∗, along the
lower branch f∗ is almost constant, as we observed in figure 19. This means from
equation (1.5) that CEA is constant along the lower branch. Now if CEA = constant
for one set of data at a given m∗, then it will be the same constant value for all other
m∗. We continue to assume here that mass–damping is small.

We now seek the value of CEA that is a constant all along the lower-branch regime
and is independent of m∗. To find this value, we find the best fit of CEA in equation
(1.5) which represents the experimental data of figure 20. From this analysis, we find
to experimental accuracy CEA = −0.54 ± 0.02, and we thereby deduce the following
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Figure 18. Amplitude and frequency response as a function of normalized velocity, U∗, for very
low mass ratio, m∗ = 1.19. The maximum frequency response in the synchronized regime, and the
end of synchronization, are both considerably higher at this low m∗, compared to the m∗ = 8.63
case in figure 3. N, Initial; ◦, upper; •, lower; �, desynchronized regime. Case of low m∗ζ and for
ζ = 0.00502.

lower-branch frequency equation:

f∗lower =

√
(m∗ + CA)

(m∗ − 0.54)
, (6.1)

where CA = 1.0. This curve is drawn through the data in figure 20, and it represents
the data very well. It should be said that our deduced value for CEA is consistent with
results from forced oscillations by Gopalkrishnan (1993), where he finds CEA ≈ −0.60
in a large region of the {A∗ versus (U∗/f∗)S} plane, encompassing the complete
domain of the lower branch. The expression for f∗lower in equation (6.1) provides a
practical and simple means to calculate the highest frequency in the synchronization
regime, if we are given the mass ratio, m∗.

An important consequence of equation (6.1) is that the frequency becomes large as
the mass ratio reduces to a limiting value of 0.54. Therefore we conclude that there
exists a critical mass ratio:

m∗crit = 0.54.

The existence of a critical mass is, for us, a surprising and interesting result.
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equation for f∗lower fits the data remarkably well, and indicates a dramatic increase in f∗lower as we
approach the critical mass ratio, m∗crit = 0.54. •, Present data; 4, Khalak & Williamson (1999);
�, Hover et al. (1998); �, Anand (1985).
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As the mass ratio decreases, the value of normalized velocity, defining the start of
the lower branch, increases according to the following relation (see figure 19):(

U∗

f∗

)
start

= 5.75. (6.2)

(The experimental accuracy associated with the numerical values in (6.2) and (6.4) is
within ±0.2.) This is consistent with the start of the lower branch in the Williamson–
Roshko (1988) map of regimes in figure 17(b), given by (U∗/f∗)S ≈ 1.14, which (for
S = 0.20) yields (U∗/f∗) = 5.7. Combining equations (6.1) and (6.2), we find the
velocity defining the start of the lower branch:

U∗start ≈ 5.75

√
(m∗ + CA)

(m∗ − 0.54)
. (6.3)

This shows that

U∗start →∞ as m∗ → m∗crit.
Therefore, when mass ratios fall below m∗crit = 0.54, the lower branch cannot be
reached and ceases to exist. We conclude that the upper branch will continue indefi-
nitely, and the synchronization regime will extend to infinity!

For conditions when the mass ratio is above critical, m∗ > m∗crit, we may also predict
the velocity U* defining the end of the lower branch in a manner similar to the above
simple analysis, to give (

U∗

f∗

)
end

= 9.25, (6.4)

giving an equation for U∗end as

U∗end ≈ 9.25

√
(m∗ + CA)

(m∗ − 0.54)
. (6.5)

The above expression yields a quantitative measure of the extent of the synchro-
nization regime, for a given mass ratio, m∗. As discussed before, the regime becomes
infinitely large when mass ratio falls below the critical value of 0.54. The extent of
the complete synchronization regime, as a function of mass ratio, m∗, is shown as the
shaded region in figure 21. The data marking the end of the synchronization (U∗end) is
represented well by equation (6.5). The plot includes data from Anand (1985), Hover
et al. (1998), and Khalak & Williamson (1999).

6.2. Upper-branch frequency

We are interested here in the frequency (f∗) of the upper branch, and the upper–lower
transition. For moderate mass ratios, m∗ = 8.63, one may analyse the upper–lower
transition using the Hilbert transform (following Khalak & Williamson 1997, 1999)
to determine an instantaneous frequency, as shown for example at U∗ = 5.85 in the
lower time traces of figure 22(a). From such examples, one may build up a complete
set of frequency data for the upper and lower branches, where they overlap, as seen
in the upper plot of figure 22(a). In essence, both frequencies may be determined in
the upper ↔ lower transition at m∗ = O(10).

On the other hand, as mass ratio is reduced to m∗ = 1.19 in figure 22(b), the time
scale of switching frequencies is much smaller, and it becomes unclear whether one
is actually switching between two distinct frequencies (i.e. between distinct response
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Figure 21. The extent of synchronization (shaded region) as a function of mass ratio, m∗. The equa-
tion for U∗end fits the data well, and indicates a dramatic increase in the extent of the synchronization
regime, determined by U∗end, as we approach the critical mass ratio, m∗crit = 0.54. For m∗ < m∗crit, the
range of synchronization will extend to infinity. Symbols are as in figure 20.

branches) anymore. From analysis of spectral peaks, it appears that the frequency f∗
travels along a line from a point close to U∗ = 5.0 and f∗ ≈ 1.0, to the point marking
the start of the lower branch. This characteristic frequency variation was found for
several other different mass ratios of the same order, m∗ = O(1). As m∗ becomes
smaller, one would expect a gradual departure from the mode switching of case (a) at
m∗ = O(10), to the apparently ‘linear’ variation of frequency of case (b) at m∗ = O(1).

If we reduce mass ratio, m∗ below the critical value, i.e. m∗ < 0.54, then we expect
the upper branch to continue indefinitely. By setting m∗ = 0.52, in figure 23, we
note that the regime of synchronization is huge compared even to the m∗ = 8.63
case. The regime extends far beyond U∗ = 22, but could not be captured due to the
experimental limits of our facility. The cylinder oscillations, even at these high U∗,
continue to be nearly periodic as shown by time traces of the oscillations in figure 23.
The oscillation frequency f∗ increases almost ‘linearly’, as for m∗ = 1.19, although in
this case we pass through f∗ = 4, before the limits of our facility are reached. In other
words, the body oscillates at large amplitude, at a frequency which is four times the
natural frequency of the structure in water! Note that the frequency data lie along a
straight line, with a slope of close to 0.174 or 1/(5.75). The line does not pass through
the origin, but instead has a positive intercept on the y-axis. We may understand this
feature better, by looking now at figure 24.

A schematic diagram of frequency response at different mass ratios is given in
figure 24. Over a large range of mass ratios, the start of the upper branch is found to
be close to the point marked as ©1 , where U∗ ≈ 1/S ≈ 5.0; and where f∗ ≈ 1.0. The
upper-branch frequencies are represented, in this diagram, as falling on a straight line
from this point, up to the point where the lower branch begins. The start of the lower
branch satisfies the condition in equation (6.2):(

U∗

f∗

)
start

= 5.75,
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along a straight line, with a slope of 0.174, which is predicted from our equation (6.2). The mass
ratio m∗ = 0.52, and ζ = 0.0052.

and is shown as one of the two dotted lines in the figure. For a given mass ratio (m∗),
the start of the lower branch will be defined, along this line, where the frequency f∗
becomes f∗lower given by equation (6.1):

f∗lower =

√
(m∗ + CA)

(m∗ − 0.54)
,

which in the case of m∗ = 1.05, for example, is marked as point ©2 . Then the lower-
branch frequency remains constant until it reaches point ©3 situated on the other
dotted line defining the end of the lower branch, given by equation (6.4):(

U∗

f∗

)
end

= 9.25.

As the mass ratio approaches m∗ = 0.54, the point along the line (U∗/f∗) = 5.75
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indicating the start of the lower branch, and the end of synchronization regime, from equations
(6.2) and (6.5), are also shown.

where the lower branch begins will correspond with a frequency f∗ which tends to
infinity. Under these conditions, the upper-branch frequencies will lie along a line
which is parallel to (U∗/f∗) = 5.75 but shifted to the left by (∆U∗ = 0.75). The
slope is 0.174, and corresponds with the upper-branch line defining f∗ found from
experimental measurements in figure 23. This now explains why the frequency line
in figure 24 does not pass through the origin, and instead has some intercept on
the y-axis. The summarizing diagram in figure 24 also explains why the slope of the
upper-branch frequency line will always be lower than the slope defining the Strouhal
frequency line, f = fvo.

6.3. Overview of the effect of mass ratio on response

The broad effects of varying mass ratio on response can be seen in figure 25 where
we have pairs of amplitude and frequency plots for quite similar mass–damping
((m∗ + CA)ζ ≈ 0.01) in all three pairs of plots, so that peak amplitudes are similar.
As mass ratio is decreased, the figure shows a large increase in the range of synchro-
nization for both the upper and lower branches. This is made especially clear in this
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presentation, where all the plots are to the same scale. The corresponding frequency
levels dramatically increase, as m∗ is reduced.

It is worth noting that one may approximately predict these kinds of response from
a single set of amplitude–frequency data, if we assume that, for similar mass–damping
(m∗ζ), the amplitude response plots all collapse onto the same locus of points in the
plane A∗ versus (U∗/f∗). (Although this point is not known a priori, the results of
Khalak & Williamson (1999), and figure 17 in this paper, show this assumption to be
very good, under a wide range of conditions.) From such a collapsed response plot,
combined with a knowledge of CEA computed at all points along this locus of points,
we can very simply predict the amplitude and frequency response, for any mass ratio.
A typical example of such a prediction, using the data at m∗ = 10.3 to compute
the response for m∗ = 1.2 is shown as the crosses (+) in figure 25. The agreement
in amplitude is good, while the agreement in frequency is excellent. (CEA is deduced
simply from a rearrangement of equation (1.5), as follows: CEA = (m∗+CA)/(f∗)2−m∗.
Since CEA is known, one can compute the frequency response using the equation:
f∗ = [(m∗ + CA)/(m∗ + CEA)](1/2), for any value of mass ratio, m∗. This then yields the
amplitude response A∗ as a function of U∗.)

In conclusion, the central purpose of this overview figure is to encapsulate the
effects of mass ratio on amplitude and frequency response, indicating with some
clarity the departure from the classical synchronization phenomena, as mass ratio
becomes very small.

7. Conclusions
In this work, we investigate the transverse vortex-induced vibrations of an elastically

mounted rigid cylinder in a fluid flow, where we have the capability to reduce mass
and damping to very low levels. We employ the DPIV technique to determine the
vorticity field, simultaneously with force and displacement measurements, for the first
time in such a free-vibration study.

There exist two distinct types of response in such systems, depending on whether
one has a high or low combined mass–damping parameter (m∗ζ). In the high-(m∗ζ)
case, one finds two response amplitude modes, which we define here as the initial
and lower branches. Across the mode transition, a jump in amplitude and in phase
angle (between force and displacement) is observed, as normalized velocity (U∗) is
increased. In the case of low (m∗ζ), as found by Khalak & Williamson (1996, 1999),
there exist three branches of response, namely the initial, upper and lower branches.
Since there are three branches in this case, there exist two mode transitions.

In order to understand the existence of two mode transitions for low (m∗ζ), we
employ two formulations of the equation of motion, one of which uses the ‘total
force’, while the other uses the ‘vortex force’, which is related only to the dynamics
of vorticity. The latter formulation is particularly useful in that the ‘vortex phase’
(between vortex force and displacement), φvortex, is usefully indicative of the mode of
vortex formation. We therefore define two distinct phases, as follows:

‘Vortex phase’ = φvortex = Phase between vortex force and displacement,

‘Total phase’ = φtotal = Phase between total force and displacement.

The first mode jump at the initial–upper branch transition, involves a large jump in
‘vortex phase’, φvortex. This is associated with a jump between 2S and 2P vortex wake
modes (as defined in Williamson & Roshko 1988). There is thus a corresponding
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switch in vortex shedding timing. At this mode jump, the frequency of oscillation (f)
passes through the natural frequency of the system in the fluid (fN water).

Across the second mode jump at the upper–lower transition, there is a jump in ‘total
phase’, φtotal . However, in this case, there is no jump in φvortex, since both branches are
associated with the 2P mode. This jump in classical phase does not reflect a switch in
timing of vortex shedding, contrary to previous assumptions in the literature. At this
mode jump, the frequency of oscillation (f) passes through the natural frequency in
vacuo (fN vacuum).

In the case of high (m∗ζ), the vibration frequency jumps across both fN water and
fN vacuum at the same velocity U∗. Therefore, the jumps in φvortex and φtotal occur
simultaneously, yielding only one mode transition, and two response branches. Under
these conditions, the switch in the timing of vortex shedding is indeed coincident with
the phase jump (φtotal), which is in agreement with previous assumptions.

At high mass ratios, m∗ = O(100), one expects from classical work that the frequency
ratio (f∗), (vibration frequency/natural frequency), will be close to 1.0. However, for
very low mass ratios, m∗ = O(1), the vibration frequency during synchronization
increases dramatically, f∗ � 1. By using the equation of motion, and observing the
nature of the response amplitude and frequency for the lower branch, we deduce an
expression for the frequency of the lower-branch vibration, valid in the case of low
(m∗ζ), as follows:

f∗lower =

√
(m∗ + CA)

(m∗ − 0.54)
,

which agrees very well with a wide set of experimental data. This frequency equation
indicates the existence of a critical mass ratio, when f∗ becomes large:

m∗crit = 0.54.

Also, by deducing an expression defining the start of the lower branch,

U∗start ≈ 5.75

√
(m∗ + CA)

(m∗ − 0.54)
,

we see that, for m∗ < m∗crit, the lower branch can never be reached and ceases to exist.
In this case, the upper-branch regime of synchronization will continue indefinitely.
Experiments at m∗ < m∗crit show the beginnings of this high-amplitude upper branch,
persisting to the limits of our facility, and yielding vibration frequencies in excess of
4 times the natural frequency.

Further studies have been made of the vortex wake modes. In particular, there
has been some debate in the literature as to whether the 2P mode is a steady-state
periodic vortex wake mode. Our DPIV, force and displacement measurements show
that this 2P mode is a steady-state mode, and is highly repeatable. The formation
of two same-sign vortices in each half-cycle of the 2P mode is associated with the
stretching and splitting of each vortex, which itself is related to the intense strain rate
field of neighbouring vortices. These strain regions fall inside the developing vorticity
concentrations for the 2P mode, hence we see the splitting and formation of vortex
pairs. For the 2S mode, the intense strain region falls outside the developing vortices,
hence the vortices are not split.

The support from the Ocean Engineering Division of ONR, monitored by Dr
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Figure 26. Strain rate levels calculated from DPIV measurements in (a), and a schematic of the
principal strain rate regions in (b), corresponding to the 2S mode (of the initial branch) and the
2P mode (of the lower branch). In the 2P mode, the high strain rate region is located within the
primary vorticity concentration C, whereas for the 2S mode it lies outside the main regions of
vorticity concentration. Arrows indicate the principal stretching direction in the high strain rate
regions. Strain rate levels shown in (a) are non-dimensional (εD/U).
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Appendix A. Vortex splitting as a mechanism causing the 2P mode
The formation of the 2P mode is associated with a splitting of a region of vorticity

each half-cycle, as observed in the sequence of figure 13. On the other hand, the 2S
mode comprises vorticity concentrations that apparently do not split in two in each
half-cycle. We can understand this tendency to split, or not to split, by briefly studying
the strain rate field in the vortex formation region behind the oscillating body, in
figure 26, computed from the velocity field using DPIV. In the case of the 2S mode, a
high strain rate region exists between the two anticlockwise vortices, A and B, but the
formation of vortices is such that the clockwise vortex C lies above this intense strain
rate region. On the other hand, in the case of the 2P mode, the intense strain rate
region lying between vortices A and B now is situated over the centre of the evolving
and deforming vortex C, which is then split apart to form two separate vortices (and
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Figure 27. Vorticity contours for the 2P mode, averaged over (a) 5, (b) 10 and (c) 20 randomly
chosen cycles. The cylinder is at the bottom extreme position in all three cases. Contour levels
shown are ωD/U = ±0.4, ±0.8, ±1.2, . . . (U∗ = 6, 4, A∗ ≈ 0.6, Re ≈ 3700).
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Figure 28. Spectra and time traces of the force and displacement for the 2P mode, corresponding
to the vorticity contours in figure 27, showing that the response is steady state and highly periodic.
In addition, the ‘total phase’ (φtotal) is reasonably constant at just below 180◦ indicating that there
is no change in the shedding mode (which would be associated with a jump of around 180◦).

thus to form into the vortex pair pattern). The directions of principal stretching,
marked by arrows, are consistent with the deformation and splitting of vortex C.
These scenarios are shown schematically in figure 26(b). The main point to note here
is that the high strain rate region between neighbouring vortices lies within a vorticity
concentration for the 2P mode, unlike the case of the 2S mode. The deformation and
vortex splitting process appears to be fundamental to the 2P wake formation mode.

Appendix B. Repeatability of the 2P mode
There has been some debate concerning both numerical simulation and experiment

about the existence of the 2P mode. We shall present evidence briefly here, which
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indicates that the 2P mode of the lower branch (we choose here m∗ = 8.63, ζ = 0.0015,
U∗ = 6.4, A∗ = 0.6, Re ≈ 3700) is highly repeatable, and continues indefinitely in our
study.

In order to demonstrate that the 2P mode is repeatable, we conducted a study with
the experiment running continuously between noon and dinner time, corresponding to
about 10 000 oscillation cycles. Within this large time period, we captured at random
periods (and one at a time) a large number of DPIV vorticity contours at the same
phase of the body motion. Random sets of these vorticity plots were averaged, all
of which clearly correspond to the 2P mode. Whether these sets comprised averages
of 5, 10 or 20 (or more) random cycles, the main vortex locations and size are quite
unaffected, as shown, for example, in figure 27. The corresponding spectra and time
traces of the position and force, shown in figure 28, demonstrate that the response
is highly periodic. In addition, the phase φtotal is reasonably constant at just below
180◦. Any change in the shedding mode back to the upper-branch 2P mode, or to the
2S mode, would indicate a jump in φtotal by around 180◦, which was never observed
during the time span of the experiment.

We feel that, since the 2P mode was observed for in excess of 10 000 cycles, it might
not be rash to suggest that the 2P mode is a steady-state periodic wake mode.
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